Home | Contact | Imprint | SitemapDeutschEnglish
NIM nanosystems initiative munich

How exact is my nanoruler?

Schematic of a nano ruler with DNA-coupled fluorescent dyes (red) on a DNA origami square (grey). The bright double signal on the black background presents highly resolved images of nanostructures acquired by super-resolution fluorescence microscopy. Picture: M Raab.

The development and evaluation of DNA origami-based nanorulers enables measurements in the nano cosmos with increasing precision. NIM scientist Prof Dr Philip Tinnefeld and his team explore such self-assembled nano structures.

The paradoxical role of turbulence

Schematic representation of Min protein patterns at the transition into the chaotic regime. Red dots are unstable local equilibriums. Picture: F Brauns (LMU)

The formation of self-organizing molecular patterns in cells is a critical component of many biological processes. NIM researcher Prof Dr Erwin Frey and a PhD student have proposed a new theory to explain how such patterns emerge in complex natural systems.

Collective disentanglement of entangled polymers

NIM physicist Prof Dr Erwin Frey and a colleague have disproven the conventional theory used to explain the dynamics of polymer solutions. They show that for biopolymers collective effects facilitate chain mobility, which is reminiscent of the behavior of glass-like materials.

Light-steering of spin-polarized currents in topological insulators

Helicity-dependent edge conductance. Picture: A Holleitner

Spin-polarization occurs as soon as an electric current flows in the topologic insulator material. Prof Dr Alexander Holleitner and his cooperation partners measured this for the first time optically at room temperature. In particular, they succeeded to steer spin-polarized currents towards the edges by a circularly polarized light beam and to read out the electron spin-polarization at the circuits facets.

Piecework at the nano assembly line

Electric fields drive the rotating nano-crane – 100,000 times faster than previous methods. Picture: E Kopperger

Nanobots are now fast enough to do assembly line work in molecular factories. NIM Scientists Prof Friedrich Simmel and Prof Don C Lamb and colleagues have developed a novel electric propulsion technology for nanorobots. It allows molecular machines to move a hundred thousand times faster than with the biochemical processes used to date.

Progenitors of the living world

The basic constituents of the earliest RNA molecules may have formed in a geothermal environment, such that seen here in Yellowstone National Park in Wyoming. Picture: fotolia/Allen

RNA was probably the first informational molecule. Now NIM chemist Prof Dr Thomas Carell and his team have demonstrated that alternation of wet and dry conditions could have sufficed to drive the prebiotic synthesis of the RNA nucleosides found in all domains of life.

New generation of ultrathin humidity sensors

Photonic crystal synthesis. Picture: K. Szendrei-Temesi

Photonic crystals comprising very few layers of 2D-nanosheets and nanoparticles or two alternating nanosheet materials represent a new generation of ultrathin humidity sensors. NIM chemist Prof Dr Bettina Lotsch and her team have developed functional colorimetric sensing materials with increased sensitivity, better optical quality and reduced production cost.

Quantum Hall Physics in 4D

Illustration of a hypothetical device for studying the quantum Hall effect in 4D systems. Picture: LMU/MPQ

Prof Dr Immanuel Bloch, NIM scientist at LMU and Max Planck Institute for Quantum Optics, and his research group implement a dynamical version of the 4D quantum Hall effect with ultracold atoms in an optical superlattice potential.

How do bacteria adapt?

Bacterial cultures fed with a changing supply of nutrients. Picture: J. Wiedersich

A fundamental prerequisite for life on earth is the ability of living organisms to adapt to changing environmental conditions. Physicists have now determined that the regulation mechanisms used by bacteria to adapt are based on a global control process that can be described in a single equation.

ERC Consolidator Grants (TUM)

F Pollmann (left) and G Koblmüller (right). Picture: NIM

Two new research projects proposed by the NIM scientists PD Dr Gregor Koblmüller and Prof Dr Frank Pollmann of the Technical University of Munich (TUM) were impressive enough to be awarded Consolidator Grants by the European Research Council (ERC) this year.

Photocatalysis without noble metals

H2 evolution with COF-based photocatalyst and cobaloxime. Picture: T. Banerjee

This first noble metal-free covalent organic framework (COF)-based photocatalytic system uses cobaloximes instead of metallic platinum as the hydrogen evolution electrocatalyst. NIM scientist Prof Bettina Lotsch and her team have developed a new COF-based system for sustainable fuel generation from water by photocatalysis.

Long-lived storage of a photonic qubit for worldwide teleportation

Artist’s view of global teleportation of quantum bits. Picture: C. Hohmann, NIM

Long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network were achieved by the NIM scientist Prof Gerhard Rempe and his team at the Max Planck Institute for Quantum Optics.

DNA origami surpasses important thresholds

As big as a virus capsid: dodecahedron constructed from DNA origami building blocks by self-assembly. Picture: H Dietz

The technique of DNA origami has not only broken out of the nanometer realm to build larger objects, but has also cut the production costs a thousand-fold. These innovations of NIM biophysicist Prof Hendrik Dietz open a whole new frontier for the technology.

ERC Consolidator Grants (LMU)

A. Högele (left) and L. Pollet (right). Picture: NIM

The European Research Council (ERC) has announced the award of the NIM scientists Prof Alexander Högele and Prof Lode Pollet with generously endowed ERC Consolidator Grants over a period of five years. Notably, both have previously received ERC Starting Grants from the ERC.

It´s a matter of gradients

Thermal energy forms pH gradient. Picture: C. Mast

Thermophoresis for the energy supply of early cells. NIM scientist Dr Christof Mast and his team suggest thermally driven formation of pH gradients and proton flux as source of chemical energy conversion in early stages of life.

17th Münchner Wissenschaftstage

Young scientists. Picture: I. Almstätter

“Shaping the future with Nano” was the topic of the Nanosystems Initiative Munich (NIM) and the Center for Nanoscience (CeNS) joint stand on the 17th Münchner Wissenschaftstage. General subject of this year´s event was – “Future plans – research, society, mankind”.

Pushing the limit

New quantum detector. Picture: F. Reinhard

Applying spin-based quantum sensors, a new detector protocol was developed by the NIM scientist Dr Friedemann Reinhard and his team. Compared to state-of-the-art detectors, considerably higher frequencies can be detected, potentially even single photons and phonons.

Viral or bacterial? New test for infections

Student team at the iGEM-competition in Cambridge (USA). Photo: iGEM-Team

Increasing antibiotic resistance is a global menace. In order to avoid unnecessary antibiotic medication, Munich students have developed a test system that can efficiently differentiate between bacterial and viral infections. At the international iGEM competition they were honored as 1st Runner Up in the category "overgraduate".

Location, location, location!

Cuvette with blue-luminescent carbon dots. Picture: S. Bhattacharyya

The optical and photocatalytic properties of so-called carbon dots can be precisely tuned by controlling the positions of nitrogen atoms introduced into their structure. The NIM scientists Prof Dr Jochen Feldmann and Dr Alexander Urban examine applications of those C-dots.

Ernst Wagner is member of the European Academy of Sciences

Wagner´s lecture. Picture: EurASc

With a lecture on the “Chemical evolution of carriers for use in nanomedicine” Prof Ernst Wagner presented insights into his research to the members of the European Academy of Sciences. We are proud to announce that he is one of the 2017 newly elected members of the society!

New flexibility

Pentacen semiconductor film. Picture: B. Nickel

Flexible graphene semiconductor films in photovoltaic devices and screens – the EU fosters the development with an 847.000 Euro grant. The NIM scientist Dr Bert Nickel collaborates with Prof Andrey Turchanin, Friedrich-Schiller-Universität Jena, on this EU Graphene Flagship.

Solar Fuels

SolTech participants. Picture: NIM

NIM scientists and worldwide experts vividly discussed about the future of solar energy and application possibilities at the 6th SolTech Conference in Munich.

Diffusion 2.0

Corrugated channel model. Picture: P. Hänggi

The theory about particle transport through ionic channels and nanopores needs to be rewritten. NIM scientist Prof Peter Hänggi and his team prove their breakthrough research with simulations and experiments on particle diffusion in channel models.

Shrinking the proton again

Laser spectroscopy. Picture: MPQ

High precision laser spectroscopy analysis of atomic hydrogen confirmed the surprisingly small value of the proton radius determined from muonic hydrogen. This was proven by the NIM Prof Theodor Hänsch and colleagues at the Max Planck Institute of Quantum Optics (MPQ) in Garching.

Fluctuating conditions favor cooperation

Picture: hiloi / fotolia.com

Cooperative interactions favor the survival of bacterial populations living on variable resources. This was shown by simulations of the NIM scientist Prof Dr Erwin Frey and colleagues, for the first time considering both, environmental and demographic fluctuations.

Award for innovative tumor therapy

Winning team (H. Leonhardt: center). Picture: www.bio-m.org

The NIM scientist Prof Heinrich Leonhardt and colleagues from LMU Munich and from Berlin have won the "m4 award" of the Free State of Bavaria. The researchers received the prize for their project "Tubulis Therapeutics", next generation antibody conjugates for tumor cell-specific drug delivery.

Successful NIM NanoDay

Already shortly after the opening of the NIM NanoDay on 10 September 2017 the Lichthof of the LMU was bustling with visitors. The young NIM scientists enthusiastically presented their research, people were enjoying scientific talks and physics comedy and the offered lab visits were completely booked and a great success.

ERC Starting Grant for Alexander Urban

NIM member Alexander Urban has received a Starting Grant from the European Research Council (ERC). In his ERC project the physicist is going to explore and further develop so called halide-based perovskites for use in LEDs and lasers.

To operate, insert dimers

Complex consisting of cGAS dimers and cytosolic DNA. Picture: K-P Hopfner

The presence of DNA in mammalian cell cytoplasm triggers an immune response by binding to a dimeric enzyme, which inserts between DNA double helices to form the “rungs” of a ladder-like structure, as the NIM scientist Prof Leonhardt and his team have now shown.

Red, green, yellow, blue …

Foto: Foto Ruhrgebiet / fotolia.com

The color of the light emitted by an LED can be tuned by altering the size of their semiconductor crystals. LMU researchers have now found a clever and economical way of doing just that, which lends itself to industrial-scale production.

Controlled Release Society awards Ernst Wagner

NIM scientist Prof. Ernst Wagner has been honored by the Controlled Release Society with a membership in the "CRS College of Fellows". Wagner is coordinator of the NIM area "Biomedical Nanotechnologies" and specialized in the development and delivery of nucleic acid based therapeutics.

Chatting coordinates heterogeneity

Bacterial populations can, under certain conditions, react in a coordinated manner to chemical messages produced by a minority of their members, as a new theoretical study carried out by NIM biophysicists from LMU Munich shows.

Supramolecular materials with a time switch

Materials that assemble themselves and then simply disappear at the end of their lifetime are quite common in nature. NIM scientists and colleagues have now successfully developed supramolecular materials that disintegrate at a predetermined time – a feature that could be used in numerous applications.

Saving energy with a tiny spot of silver

In the future, computers are expected to run on light particles instead of electrons. To that end, researchers are testing the use of gold nanoparticle chains as light conductors. LMU scientists now demonstrate how a tiny spot of silver could save enormous amounts of energy in light computation.

Semiconductors as decal stickers

Put an end to error-prone evaporation deposition, drop casting or printing: Scientists from LMU Munich and FSU Jena have developed organic semiconductor nanosheets which they can easily remove from a perfect growth substrate and place onto other preferred substrates.

Funding for research network “SolTech” extended

The research network „Solar Technologies Go Hybrid“ (SolTech) will be funded with a total amount of 17 million Euros for an additional five years by the Free State of Bavaria. Among the members are numerous research groups of the NIM Area “Nanosystems for Energy Conversion” who highly benefit from the intensive exchange within the network.

ERC Grant for Thomas Carell

NIM member Prof. Thomas Carell has won an ERC Advanced Grant. In his new ERC project, “The Chemical Basis of RNA Epigenetics”, Carell will explore how and why organisms chemically modify the nucleoside subunits of the nucleic acids DNA and RNA.

The quickest route to the tip

Photo: pixabay.com

According to a theoretical model developed by LMU physicists, in cell protrusions, cargo-transporting motor proteins often get in each other’s way. The upshot is that freely diffusing proteins reach the leading edge faster.

Unlocking the secrets of the Achilles’ heel

Transition from tendon to bone connected by collagen fibers

Walking, running, jumping – every movement of the foot stretches the Achilles’ tendon and the loads can approach ten times the body weight. But the connection between the heel bone and Achilles’ tendon withstands this challenge. Scientists at TU Munich including NIM member Prof. Andreas Bausch has now discovered why.

A new spin on electronics

Our computer technology is based on the transport of electric charge in semiconductors. This technology’s potential will be soon reaching its limits since the components deployed cannot be miniaturized further. NIM scientists and colleagues demonstrate an alternative: using an electron’s spin to transmit information.

Monday, 12 February, 2018

Two-dimensional coherent spectroscopy of a semiconductor microcavity

Prof Dr Alan D Bistrow, Department of Physics & Astronomy, West Virginia University Morgantown, USA


Tuesday, 20 February, 2018

Rethinking pattern formation in reaction–diffusion systems

Nature Physics, Published online February 19 2018,



Regular seminars and lectures for NIM graduate students:


print to top